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Abstract—We introduce Self-supervised Online Reward for non-experts. In addition, RL approaches can eas-
Shaping (SORS), which aims to improve the sample ily exploit badly designed rewards, get stuck in local
ef ciency of any RL algorithm in sparse-reward environ-  gptima and induce behavior that the designer did not
ments by automatically densifying rewards. The proposed jnteng [9]. In contrast, goal-based sparse rewards are
framework alternates between classi cation-based reward appealing since they do not suffer from the reward

inference and policy update steps—the original sparse L .
reward provides a self-supervisory signal for reward infer- exploitation (commonly known as reward hacking) prob-

ence by ranking trajectories that the agent observes, while €M t0 the same extent. However, sparse rewards only
the policy update is performed with the newly inferred, Provide rewards for few select states. Reward sparse-
typically dense reward function. We introduce theory that ness complicates the temporal credit assignment problem
shows that, under certain conditions, this alteration of signi cantly and negatively impacts the overall learning

the reward function will not change the optimal policy process. Reward shaping is a commonly used approach
of the original MDP, while potentially increasing learning g speed up RL in environments with sparse rewards [10],
speed signi cantly. Experimental results on several sparse- [11], [12]. However, altering the ground-truth reward can

reward environments demonstrate that, across multiple 0 ytiaiy change the optimal policy and, hence, induce
domains, the proposed algorithm is not only signi cantly i :
undesired behavior.

more sample ef cient than a standard RL baseline using )
sparse rewards, but, at times, also achieves similar sample N this paper, we propose a novel RL framework
ef ciency compared to when hand-designed dense reward that efciently learns a policy for sparse-reward en-
functions are used. vironments by training on dense rewards that are in-
ferred in a self-supervised manner. Our framework—

I. INTRODUCTION Self-supervisedOnline Reward Shaping (SORS)—can
speed up the policy learning process without requiring

While reinforcement leaming (RL) algorithms hav%m/ domain knowledge or external supervision, and the

ach|_eved tremendous success in many tasks ranging fr roposed framework is compatible with any existing RL
Atari games [1], [2], [3] to robotics control problem algorithm

[4], 5], [6], they often struggle in envirqnments with %ORS alternates between updating the policy using
fgar_se rz\{varrds. rln ;jrilnsi rriwatrd t:tettlngs, ﬂ;er ag%r]l RL algorithm of choice and inferring a dense reward
celves diverse rewards | oSt states, €.g., a TeWRIL ion from past observations. It infers a reward using

proportional to distance to the goal, rather than a const mclassi cation-based reward inference algorithm, T-

reward everywhere but the goa_l. Such dense rewar[géx [13]. However, unlike T-REX, instead of requiring
Ie_ad to f_requent updates that quickly allow the agent Fﬁanual rankings over the trajectories, SORS uses the
dlﬁS r?ntlate g?Od dste_ltes_ from baddoges. dqf sparse reward as a self-supervised learning signal to rank
i " otunate }[/ bes'g"c;f}g altgtook’ 7enze reward Illmﬁie trajectories generated by the agent during learning.
ion is known to be a dif cult task [7], [8], especially We justify the rationale behind the reward inference

« Equal Contribution performed by SORS based on the following insight: Any
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of the environment. The objective function that SORfinction is a good shaping potential, but this insight is
optimizes for reward inference encourages the densa helpful in practice, as the goal of RL is nding the
reward function to induce the same total order as tlptimal value function is the goal of RL and we do not
sparse reward over the trajectory space. have it a priori. In this work, we propose an alternative

Our empirical results on several sparse reward Mreward shaping framework in which we replace the origi-
JoCo [14] locomotion tasks show that SORS can signinal reward function with another shaped reward function
cantly improve the sample ef ciency of the state-of-thewhich is updated online as the RL agent interacts with
art baseline algorithm, namely Soft-Actor-Critic (SAC)the environment. Our reward shaping approach does not
SORS even achieves comparable sample ef ciency taequire any human guidance or extra information.
baseline that uses a hand-designed dense reward func-

tion.

Devlin et al. [16] build on potential-based shaping

We make the following contributions: [10] to prove that dynamic shaping of the reward func-

We propose a novel reward shaping algorithn’ii,on does not change the optimal_policy, provided that
SORS, that pairs with any existing RL algorithmV& Use the potential-based shaping framework. Other

performs self-supervised online reward shaping, afgsearchers [11] have extended potential-based shaping
can improve the sample ef ciency of the RL aIgoIlO] to potential functions that are functions of state and

fithm in sparse-reward environments. action pairs rather than states alone. They propose two

We provide theoretical justi cation for our approac€thods for providing potential-based advice, namely,
by showing a suf cient condition for two reward!00k-ahead advice, and look-back advice.

functions to share the same set of optimal policies.
We use this condition to show that, under some ag;
sumptions, replacing the ground-truth sparse rewatgpz[

function with the inferred shaped reward funct'or|E50Iicy to produce pairs of trajectories from each starting

does not alter the optimal policies. oint and use the difference between the two rollouts

g 9
We empirically demonstrate that the proposet% discover and avoid local optima. Unlike their work,

Ejnet(?ot? colnver%el_s sllgnl_f[:r?ntly fastelr tga?t isttar\we do not need to alter the way the base RL algorithm
ard basefine algoriihm, hamely S0t ACIOTe ) a1 experiences. Moreover, we do not rely on using

Critic (SAC) [15] for several sparse-reward MU‘JOC% distance-to-goal shaped reward function, instead we

locomotion tasks. learn a dense reward function which asymptotically leads
Il. RELATED WORK to optimal policies that equivalent to those of the original

In another interesting work on reward shaping [17],
authors propose a new RL objective which uses a
ance-to-goal shaped reward function. They unroll the

A. Reward Shaping sparse reward.

Reward shaping is a method to incorporate domainThere is prior work on automatic reward shaping [18],
knowledge to densify reward functions. Typically, thgyhere they propose reward shaping via meta-learning.

goal

of reward shaping is to speed up learning anghejr method can automatically learn an ef cient reward

overcoming the challenges of exploration and credhaping for new tasks, assuming the state space is shared
assignment when the environment only returns a sparggong the meta-learning tasks. This work differs from
uninformative, or delayed reward. ours in that it is in the context of meta learning, whereas

In

one of the seminal works on reward shaping [10}yr automatic reward shaping algorithm works even for

the authors study the forms of shaped rewards whighsingle task, and we do not need to train our model on
induce the same optimal policy as the ground-trufjjiprary of prior tasks.

reward function. Speci cally, they proved that the so-

called potential-basedeward shaping is guaranteed not Brys et al. propose a method to use expert demonstra-
to alter the optimal policy. The only requirement is thaions to accelerate RL by biasing the exploration through
the potential function needs to be a function of stategward shaping [12],. They propose a potential function
While they provide one speci ¢ form for reward shapingvhich is higher for state-action pairs similar to those
without altering the optimal policy of the MDP, theyseen in the demonstrations and low for dissimilar state-
do not provide any practical algorithm for acquiringaction pairs. Another related work studies online learning
a potential function that can improve the learning adff intrinsic reward functions as a way to improve RL
optimal behavior. They argue that the optimal state valadégorithms [19].



B. Sparse Rewards of demonstrations and uses the ranking to label which

RL in sparse-reward environments has been tacklegdgmonstration is preferred in a given pair. It then uses a
various ways. For instance, the authors of [20] addrdagary classi cation loss over these preferences to update
sparse-reward environments that can be de—compo&'é%l reward function. They show their algorithm learns
into smaller subtasks. They learn a high-level scheduféward functions that, when optimized for a policy, often
and several auxiliary policies and show that this leads @ceed the performance of the best demonstrations.
improved exploration. Their algorithm learns to provide We use an adaptation of the T-REX algorithm for the
internal auxiliary sparse rewards in addition to the origeward inference part of our algorithm. However, our
inal sparse reward. Our algorithm is different from thi¥ork is different from the above works in two ways.
line of work as our algorithm works for singular tasksFirst, we do not need an initial set of demonstrations.
and we do not use any hierarchy of decision makingecond, our algorithm does not require a human in
We learn a dense reward which assigns a reward ! loop—instead we leverage the environment's sparse
every individual state, rather than merely providing al¢edback to rank the collected trajectories and then use
auxiliary reward on selected states. the set of ranked trajectories for inferring a dense reward

Other related work [21] on learning from sparse rdlinction to accelerate policy learning.
wards proposes a method to learn a temporally extendedn another work, Brown et al. propose an algorithm to
episodic task composed of several subtasks where " a reward from a set of sub-optimal demonstrations
environment returns a sparse reward only at the endtB@t are not ranked by an expert [24]. Using the set of
the episodes. Using the environment's sparse feedb&@monstrations, they perform behavioral cloning to learn
and queries from a demonstrator, they learn the higl-Policy. They then inject noise in the policy to produce
level task structure in the form of a deterministic nitevarious qualities of trajectories and rank the trajectories
state automaton, and then use the learned task strucRtged on the level of noise used in producing them.
in an inverse reinforcement learning (IRL) framewor hen they proceed to learn a reward from the set of
to infer a dense reward function for each subtask. Of@nked trajectories. Our work differs, in that our self-
work differs in that we do not rely on an expert tupervisory signal comes from a known sparse reward
provide demonstrations and instead we learn to shape ##hal on agent-collected trajectories, and our objective is

sparse reward relying only on the environment's sparuse the learned reward function as a way to accelerate
feedback. policy learning, rather than imitate demonstrations.

C. Learning a Reward Function From Prefer- [1l. BACKGROUND AND PRELIMINARIES

ence/Rankinq . A. Reinforcement Learning
_ Seyeral prior works have studied the problem ofA Markov decision process (MDP) is de ned as
inferring a reward function from human preferenc

. . = hS;A;T;r; i, in which S is the state space,
or rankings over demonstrations. One early work R s the action spaceT S A | P (S) is the

learning from preferences [22] proposes an active Ieart?énsition dynamics which maps any given state and

|rr:g z;pproaf:h to flnfer a rev#]rd fungtlon thall.t encocc; Rtion pair into a probability distribution over the next
the humans preferences. They train a policy an Hater 1S A! Ris the reward function, and is the

reward netvyork S|multaneou§|y. Al ea_Lch |te_rat|on, the&iscount factor. At each discrete time step, the MDP is
use the policy to produce pairs of trajectories and th

. : Ff a states, the agent takes an acti@y and as a result,
query the human for their preference over the pair

) . ) e MDP transitions into a new stats® T(s;a), and
trajectories and use these preferences to improve E & agent receives a scalar valued rewagsta: 9. A
reward by minimizing a preference-based loss functio licy (ajs): S!P (A)is dened as a pr(;bability
They then updated the policy based on the improv‘gﬁstribution over actions at any given state Given a
reward. In other work [23], Ibarz et al. extend th?)olicy we have the following de nitions:
work Christiano et al. [22] to use an initial set o ' '
demonstrations to pre-train the policy, rather than sta (s;a) = r(s;a)+ Ex (ass9Es T(s:0)[Q(S% 9]
training from a random policy. Brown et al. introduce the,, (s)= E S0 (s:)]

T-REX algorithm, which infers a reward function from a a (@9 ’
given set of ranked demonstrations [13],. Their algorithmhereQ (s;a), V (s) are respectively the action-value
samples pairs of demonstrations from this initial sétinction and the state value function for the policy



The goal of RL is to nd a policy with maximal value De nition 1 (Total order equivalency)For a given

function at each state, or nd the maximal value functioreward-free MDPM = hS;A;T; i with possible tra-

directly. A trajectory = fst;atg‘t:’1 is a sequence jectoriesT = (S A)*, the total order equivalency of
of state action pairs obtained by running a policy oreward functions; andr, is de ned as

the MDP, where subscript is the time index of the _

trajectory, i.e., each trajectory starts frof®y;a;). We roo reiffoov g, 0o, 380 2T

de ne the discounted return of g trajectory according, o, e 1 Given a deterministic reward-free MDP
to reward f“r?c“o’“ as:Ri( ) = Jtzjl. t 1r(s“§t)’ M = hS;A;T; i, if two reward functiong andr?are
Wherg(st; a) Is the state and action pair of the trajectonytal order equivalent, they will induce the same set of
attimet. optimal policies, i.e.r % =) f . (s)g=f ,.(9)g,
wheref g andf ,.g are the sets of optimal policies

B. Reward Shaping induced by reward functions and r° respectively.

Given an MD.P with a reward funct|0|r_|(s;a), re—_ Proof. The state-action value function of a policyat
ward shaping is the process of replacing the origi- given state and action paira is de ned as:

nal reward with another reward function, or augment-

ing the original reward function with an auxiliary re- Q (s;a)= E 1 [Rr ( sa)]
ward functionF(s;a) : S A ! R to create
a new reward function[10]; Concretelysn(s;a) = Which is equal to the expected return over all trajectories

rrew(S;@) OF ren(s;a) = r(s;a) + F(s;a), where sa 2 Tsa that start with actiona at states and

rsn(s;a) is the shaped reward. While the goal of rewartpllow policy  under the transition dynamick. Given

shaping is to speed up RL, in general, a shaped rewég optimal state-action value functid@, for reward

could induce a different optimal policy than the originaiunctionr, an optimal policy under the reward function

reward. r is derived as , (s) = argmax , Q, (s; a) ®. Following

these de nitions, it is clear that any action chosen by an
IV. PREFERENCEORACLE AND EQUIVALENCY oF  optimal policy will yield the highest possible Q value,
REWARD FUNCTIONS i.e.,

Consider a reward-free MDRI = KS;A;T; i, and Q,(s; ((s) Q,(s;b 8b2 A:
a preference oraclavhich is a binary relation , that _ L . _
de nes a total order on the set of all trajectories sampled 70r MDPs with deterministic dynamics, an optimal
from the MDP. We can order all possible trajectorigROlicy under a reward function will induce a set of

based on the total order de ned by the oracle: optimal trajectories starting from any state-action pair,
where all the optimal trajectories receive equal returns

from reward functiorr. If the policy is deterministic, the
set of optimal trajectories will include only one member.
Note that any deterministic reward functiogs; a) can Hence, for deterministic MDPs the optimal Q-function
serve as a preference oracle via the discounted r&urnfor state-action pair(s;a) and an optimal trajectory

1 p 2 p p k p

under that reward function: starting from the same pair are
iorogs Re(i) o Re(): Qr(s;8) = max Rr( ), and
where | is the binary relation dened by reward (s;@) =argmax Re( ):

function r. Using the notion of total order, we will 2T ea

de ne a set of reward functions that share the sameUsing the total order relation ; induced by the
set of optimal policies; speci cally, we will prove thatreward functionr, and the equivalence betweenand
two reward functions that produce the same total ordet we conclude that the two reward functions share the
will also yield the same set of optimal policies undesame set of optimal policies. In other words, if is an
deterministic transition dynamics. We begin by formally

de ning the total order equivalency between two reward 'There can be more than one optimal policy corresponding to a
functions. given optimal Q-function. For example, if multiple actions maximize
the Q-function at a given state.



optimal policy under reward function, it is an optimal the sparse reward scenario for which we have a coarse

policy under reward function® as well: notion of task progress or success. Speci cally, we try
to infer a new, potentially dense reward function that
8b2 A; Q,(s;b  Q(s; ((9)) satis es the order constraints imposed by the sparse
, max max R;( ) max R¢( ) reward function and replace the original reward with
b 2Te s @ the inferred reward function to improve the sample
: max (s;B) ¢ (si (9) ef ciency of policy learning. The detailed explanation
, max (s;B o (S .(s) (1 r9 of the method is presented in the next section.
V. METHOD
, max max Ryo( ) max Ryo( ) ) .
b 2T 2Ts (s We tackle the problem of RL in sparse-reward environ-
, 8 b2 A; Qu(s;b  Q,u(s; (9) ments. The key idea is to infer a dense reward function
' (s) is an optimal policy under® O that shares the same set of optimal policies with the

sparse reward, and use the inferred reward function for

Theorem 1 suggests that a set of optimal polici®licy learning to foster faster, sample ef cient learning.
is uniquely de ned by the total order, and there ar¥/e call the proposed RL frameworgelf-supervised
potentially in nitely many reward functions that sharéonline Reward Shaping (SORS).
the same set of optimal policies. Among these rewardSORS alternates between online reward shaping and
functions, some are preferable with respect to ef ciendginforcement learning with the inferred reward function.
of policy learning. While sparse rewards are hard f8uring the online reward shaping, a potentially dense
learn from due to the credit assignment dif culty, a morééward function is trained with a loss function that
informative reward function (potentially dense) can exi&hcourages the inferred reward to create the same total
that shares the same set of optimal policies and is muigler over trajectories as the sparse reward. During rein-
easier to learn from. This implication is consistent witfPrcement learning, the policy is trained with the inferred
the optimal reward problem [25] and reward shapirfgfward function and new trajectories are collected in the
[10]. process. Since SORS can work with any RL algorithm,

While the speci cation of a set of reward functiondVe mainly focus on discussing the _online reward_ shaping
that share the same optimal policy has been studigpdule. The overall framework with an off-policy RL
[26], [27], the proposed theorem is more general f@ck-end is described in Algorithm. 1.
that we do not assume any restriction on the reward'Ve train a parameterized reward function by en-
function space. In [26], a behavior equivalence cla§9Uraging it to satisfy the order constraints imposed by
(BEC) is de ned across reward functions that shat€ ground-truth sparse reward function Speci cally,
the same feature vector extractofs: a), so the reward W€ train the_reward _functlpn with a binary classi cation
function space is restricted to the span of the featd$S OVer pairs of trajectories sampled from the trajectory
vector space. The BEC can be very small if the featufslffer D that saves every observed trajectory during
space is not diverse enough and de ning good featureginforcement learning. The loss function is formally
a priori requires external knowledge or a well-designélf ned as: X
loss function ['28.]. By contrast, our theory does _not L(:D)= I(i v )logP( 0
have any restrictions on the form of reward function,

] D
so our notion of equivalence can contain a larger reward i)
function set than BEC. +@ 1Ci v NogP(Ci )
While the preference oracle can de ne the optimal 1)

behavior that we want to induce, it is unreasonable {gare|(:) is the indicator function that evaluates to one

assume that we have such an oracle at hand, sincg {he condition inside it is True, and evaluates to zero
requires a total order over all possible trajectories. IRihanvise P( ) is de ned as:

stead, previous methods working with orderings between
trajectories assume external human input in an online p(, i) = exp(Rr (1)) : ()

[22] or ofine manner [13], with a human preference exp(Rr (i) +exp(Rr ()

oracle. While we use the same loss function as theBkis same loss function has been used in other work to
approaches, we focus on the reward shaping problemtiiain a reward function with given pair-wise preference




over trajectories, since the loss function encourages fgorithm 1 SORS RL Framework (w/ off-policy RL

learned reward to assign a higher return to the preferr@'@o-)

trajectory [22], [13]. While our nal goal is not just to 1: Input: An environment with sparse rewargd(s; a).
infer a reward based on the pairwise preferences, but A base RL algorithm of choice (SAC in this work).

learning a reward function that satis es the total order2: Output:
constraints generated by the ground-truth sparse reward, work r (s; a).

we empirically nd that pairwise preference-based loss

. Parameters of the dense reward net-
: Parameters of the policy network

(ajs).

can enforce a total order comparable to the ground-trutB: Hyper-parameters: N: Total number of environ-

total order. We leave the use of recently proposed ranking ment interactions?; ; N, : Reward update period and

loss [29] that considers the total order as a future work. number of reward updates for every peri®; Np:
Note that SORS does not make use of any external RL update period and number of RL updates for

information in addition to what an ordinary RL algorithm

every period

requires; the framework receives the exact same obses- Initialize and , initialize the trajectory buffeD
vations and rewards from the environment as a baseline to an empty set.

RL algorithm would, and it performs the online rewards: // Collect Initial Trajectories

shaping in aself-supervisednanner. Although SORS 6: Run a random policy and Il up the trajectory buffer

does not use any extra information, we hypothesize that for i =1 :::

the additional reward shaping module may improves:
learning since (1) we can leverage a deep neural netword
in inferring the relevant features that may be infeasible
for a human to de ne when writing down a rewardio:
function, and (2) SORS performs credit assignment not:
only when learning a value function / policy (as ini2:
standard RL), but also by inferring a new reward functions:
from the automatically-ranked trajectories that it collects4:
Another way that we could have used the learned
dense reward is as a shaping potential, ensuring cars:
vergence to the same set of optimal policies [10}e6:
As discussed in related works, potential-based reward:
shaping is a theoretically sound way of shaping thes:
reward functions while ensuring that the optimal policy is

N do
/I Gather Experience
Execute the current stochastic policy and append
the transition tuples to the trajectory buffer .
Replace old trajectories if buffer is full.
/I Dynamic Reward Shaping Module
if i modP, =0 then
for N, iterationsdo
Update with respect to the loss de ned in
Eq.1 with trajectory pairs sampled frob .
/I Reinforcement Learning Module
if i modPp =0 then
for Np iterationsdo
Update according to the latest shaped re-
wardr (s;a) using the base RL algorithm.

maintained [10]. However, the effects of potential-based
reward shaping can be “learned away” over time, as they

are equivalent to value function initializatiofl][ Hence, the episode, whichever comes rst. We use 6 MuJoCo
we choose to use the learned dense reward to replgggmotion tasks, namely Hopper, Walker2d, HalfChee-
the environment's sparse reward rather than using it @ Swimmer, Ant, and Humanoid whose observation
a shaping potential. and action space range from small (8 and 2 for Swim-
mer respectively) to large (376 and 17 for Humanoid
_ _ _ respectively). The code is available onfine

We aim to study the following questions: (1) Does \ye choose the Soft-Actor-Critic (SAC) algorithm as
the inferred dense reward function improve the sampi&s pack-end RL algorithm, and we compare the training
ef ciency of the base RL algorithm? (2) Will the inferredprogress of the proposed method against a baseline that
Qense reward function induce the same p_olicy as the qpgns 3 policy with (1) the delayed reward or (2) the
induced by the ground-truth reward function? ground-truth dense reward provided by the MuJoCo envi-

Reward shaping is particularly helpful when thesnment. Note that the SAC method is a strong baseline,
ground-truth reward is sparse or otherwise hard to leagpich is better than or comparable to other regularized

from. Hence, we test SORS on delayed MuJoCo envy gigorithms [30] on the MuJoCo environments, and
ronments [30], [31] in which rewards are accumulategbpce we omit other baselines.

for a given number of time steps (20 time steps) and
provided only at the end of these periods or the end offCode: https://github.com/hiwonjoon/IROS20BORS

VI. EXPERIMENTS






shows similar sample ef ciency and asymptotic perfor-

mance to the baseline trained with the ground-truth dense
reward function on all environments except HalfCheetaH!
This implies that the proposed method can successfully
densify the reward function. Swimmer is an example of

an environment where the policy trained with our methoi2
converged to a better policy than the baseline that us 4
the original dense reward of the environment. The results
on Swimmer support our hypothesis on the existence of
an informative reward function that potentially fostersS]
faster reinforcement learning than the sparse reward, or
even the ground truth dense reward function. [4]

VIlI. CONCLUSION

We propose a novel reward shaping method, calleg]
SORS, which aims to infer a reward function that
satis es the preference constraints given by the original
sparse reward function. Since the constraints can B8
automatically generated by observing the return of the
experienced trajectories according to the sparse rewarg
the proposed algorithm is fully self-supervised. Our
experiments show that SORS enables faster, more sample
ef cient reinforcement learning by generating a dens
reward function that induces a policy with strong per-o
formance with respect to the original sparse reward. Our
experiments show that it is easier to learn from til 0
learned dense reward, as it provides more immediaie
feedback, even though the assumptions needed for a the-
oretical guarantee of leaving the set of optimal policid&ll
unchanged are not strictly met. Along these lines, future
work may include an investigation of how to provide
guarantees with respect to optimality in the original MDR2]
under weaker assumptions than what we have provided
in this work.
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